The next generation of autonomous systems, from commercial Unmanned Aerial Vehicles (UAVs) to outdoor ground robots to self-driving cars, will need much better localization accuracy than has traditionally been available. Additionally, high-volume autonomous systems and vehicles require a solution that is available at an acceptable price point. There has also been a lack of consensus around what combination of sensors will be required, especially for safety-critical applications that have to work in a wide range of conditions.
In this paper, we discuss the tradeoffs of varying sensor packages and demonstrate that precise Global Navigation Satellite Systems (GNSS), coupled with an Inertial Measurement Unit (IMU), provides the localization cornerstone for these systems. Precise knowledge of system position and attitude increases the utility of locally collected imagery and 3D sensors by reducing the computational cost of registering data with existing maps or previously collected data. Precise GNSS provides the system with global position while the IMU provides heading, pitch, and roll information while also allowing global position to be known by the system at 100 Hz or more.
We will present results from a low-cost Inertial Navigation System (INS) that incorporates Real Time Kinematic (RTK) GNSS and a Micro-Electro-Mechanical Systems (MEMS) IMU, showing that it provides excellent performance under a range of challenging conditions and is available at a fleet-friendly price-point.